1. Scientific Opinion on the substantiation of a health claim related to iron and contribution to normal cognitive development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA Journal 2013;11(7):3335, 10 pp.
2. Lozoff et al. Preschool-aged children with iron deficiency anemia show altered affect and behavior. J Nutr.2007;137(3):683-689.
3. Lozoff et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006; 64:S34–S43.
4. EFSA Scientific Opinion on Dietary Reference Values for iron. EFSA Journal 2015;13(10):4254, 115 pp.
5. UNICEF 2013 The first 1,000 days of life: The brain’s window of opportunity (unicef-irc.org)
6. https://centreforearlychildhood.org/latest-learnings/essays/towards-a-strong-foundation-social-and-emotional-development-in-young-children/ (accessed on 15-05-2023).
7. Soto-Icaza P, Aboitiz F, Billeke P. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models. Front Neurosci. 2015;9:333.
8. Soto-Icaza P, Aboitiz F, Billeke P. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models. Front Neurosci. 2015;9:333.
9. Appleton J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr Med (Encinitas). 2018;17(4):28-32.
10. Foster et al. 2017. Stress & the Gut-Brain Axis: Regulation by the microbuome. Neurobiology of Stress. Vol 7 124-136.
11. Brett BE, de Weerth C. The microbiota-gut-brain axis: A promising avenue to foster healthy developmental outcomes. Dev Psychobiol. 2019;61(5):772-782.
12. Laue HE, Coker MO, Madan JC. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front Pediatr. 2022;10:815885.
13. Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol. 2022;10:880544. Published 2022 Apr 14. doi:10.3389/fcell.2022.880544.
14. Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr. 2018;107(8):1310-1321. doi:10.1111/apa.14287.
15. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72(4):267-284.
16. Scholtens PA, Goossens DA, Staiano A. Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: a review. World J Gastroenterol. 2014;20(37):13446-13452. doi:10.3748/wjg.v20.i37.13446.
17. Moro G, Minoli I, Mosca M, et al. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr. 2002;34(3):291-295. doi:10.1097/00005176-200203000-00014.
18. Huelke DF. An Overview of Anatomical Considerations of Infants and Children in the Adult World of Automobile Safety Design. Annu Proc Assoc Adv Automot Med. 1998;42:93-113.
19. https://www.unicef.org/early-childhooddevelopment.
20. Law, Franzo 2nd et al. “Vocabulary size and auditory word recognition in preschool children.” Applied psycholinguistics vol. 38,1 (2017): 89-125.
21.Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr. 2018;107(8):1310-1321.
22. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72(4):267-284.
23. WHO (2019). Children are not little adults. In: WHO training package for the health sector: children’s health and the environment. Geneva: World Health Organization.
24. Alles MS, Eussen SR, van der Beek EM. Nutritional challenges and opportunities during the weaning period and in young childhood. Ann Nutr Metab. 2014;64(3-4):284-293.